

Date Planned : / /	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

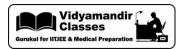
- **153.** A jar contains a gas and a few drops of water. The pressure in the jar is 830 mm of Hg. The temperature of the jar is reduced by 1%. The vapour pressure of water at two temperatures are 30 and 25 mm of Hg. Calculate the new pressure in jar.
 - (A) 792 mm of Hg (B) 817 mm of Hg (C) 800 mm of Hg (D) 840 mm of Hg
- **154.** Which is/are correct for real gases?
 - (A) $\lim_{P\to 0} (PV_m) = constant$ at constant high temperature
 - (B) $\lim_{V_m \to 0} (PV_m) = \text{constant at constant low temperature}$
 - (C) $\lim_{P\to 0} \left(\frac{PV_m}{RT}\right) = 1$ at high temperature
 - (**D**) $\lim_{V \to 0} \left(\frac{PV_m}{RT} \right) = R$
- *155. The incorrect statement is/are:
 - (A) On increasing pressure, u_{rms} increases
 - **(B)** On decreasing temperature, average kinetic energy decreases
 - (C) On expansion of a gas at above inversion temperature, cooling effect is observed
 - (D) The correct order of molecular velocities for a gas is $u_{rms} > u_{mp} > u_{average}$
- **156.** Match the items of columns I and II.

Column-I		Column-II	
(P)	Z for ideal gas behavior	(1)	3/8
(Q)	Z for real gas at low pressure	(2)	$\left(1 + \frac{Pb}{RT}\right)$
(R)	Z for real gas at high pressure	(3)	1
(S)	Z for critical state	(4)	$\left(1 - \frac{a}{RTV}\right)$

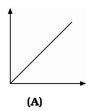
Codes:

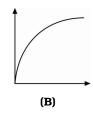
Ρ

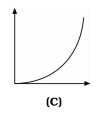
		0		
(A)	1	2	4	3
(B)	3	4	2	1

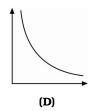

Q

R


S


(C) 2 1 4 3


(D) 1 2 3 4



157. Graph for V vs. $\frac{1}{T}$ for ideal gas at constant P and n is plotted. Which of the following is correct?

- 158. The density of steam at 100° C & 1 atm pressure is 0.5974 kg m⁻³. What is compressibility factor of steam.
 - **(A)** 0.98
- **(B)** 1
- **(C)** 1.2
- **(D)** 0.68

DTS-14 200 Level-3 | States of Matter